Brain Tumor Segmentation from Multispectral MRIs Using Sparse Representation Classification and Markov Random Field Regularization
نویسندگان
چکیده
Automatic brain tumor segmentation from multispectral magnetic resonance imaging (MRI) data is an important but a challenging task because of the high diversity in the appearance of tumor tissues among different patients and in many cases similarity with the normal tissues. In this paper, we propose a fully automatic technique for brain tumor segmentation from multispectral human brain MRIs. We first use the intensities of different patches in multispectral MRIs to represent the features of both normal and abnormal tissues and generate a dictionary for following tissue classification. Then, the sparse representation classification (SRC) is applied to classify the brain tumor and normal brain tissue in the whole image. At last, the Markov random field (MRF) regularization introduces spatial constraints to the SRC to take into account the pair-wise homogeneity in terms of classification labels and multispectral voxel intensities. Our method was evaluated on 20 multi-modality patient datasets with competitive segmentation results.
منابع مشابه
Probabilistic Gabor and Markov Random Fields Segmentation of Brain Tumours in MRI Volumes
In this paper, we present a fully automated technique two stage technique for segmenting brain tumours from multispectral human brain magnetic resonance images (MRIs). From the training volumes, we model the brain tumour, oedema and the other healthy brain tissues using their combined space characteristics. Our segmentation technique works on a combination of Bayesian classification of the Gabo...
متن کاملFully Automatic Segmentation of Brain Tumor Images Using Support Vector Machine Classification in Combination with Hierarchical Conditional Random Field Regularization
Delineating brain tumor boundaries from magnetic resonance images is an essential task for the analysis of brain cancer. We propose a fully automatic method for brain tissue segmentation, which combines Support Vector Machine classification using multispectral intensities and textures with subsequent hierarchical regularization based on Conditional Random Fields. The CRF regularization introduc...
متن کاملAutomated Tumor Segmentation Based on Hidden Markov Classifier using Singular Value Decomposition Feature Extraction in Brain MR images
ntroduction: Diagnosing brain tumor is not always easy for doctors, and existence of an assistant that facilitates the interpretation process is an asset in the clinic. Computer vision techniques are devised to aid the clinic in detecting tumors based on a database of tumor c...
متن کاملMS Lesion Segmentation using Markov Random Fields
We present a fully automated framework for identifying multiple sclerosis (MS) lesions from multispectral human brain magnetic resonance images (MRIs). The brain tissue intensities and lesions are both modeled using Markov Random Fields (MRFs) to incorporate local spatial variations and neighborhood information. In this work, we model all brain tissues, including lesions, as separate classes as...
متن کاملAutomated segmentation of mouse brain images using extended MRF
We introduce an automated segmentation method, extended Markov random field (eMRF), to classify 21 neuroanatomical structures of mouse brain based on three dimensional (3D) magnetic resonance images (MRI). The image data are multispectral: T2-weighted, proton density-weighted, diffusion x, y and z weighted. Earlier research (Ali, A.A., Dale, A.M., Badea, A., Johnson, G.A., 2005. Automated segme...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015